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Design approach
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Conceptual Schema

DB Schema

Physical Schema

Real world

Graphical models
(UML, 
Entity−Association)

Text Models
(Object, Relational)

Platform Models
(Java, C++, SQL)

5. Drawing-up the physical schema

1. Perceiving the real world

2. Drawing up the conceptual schema

3. Designing the DB schema (logical)

4. Refining the DB schema (logical)

External schemas 

Graphical models & 
Natual Language
(UML, FlowCharts,...)



Recall
• In practice, it is often easier to start with a higher-level model and 

then convert the design to the relational model. 

• There are several options for the notation in which the design is 
expressed. 
• Entity-relationship diagram
• UML (class diagram)
• ODL(object description language)
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ER Diagrams, Naming Conventions, and Design Issues
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Representing Keys in the E/R Model
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• Weak Entities

• A weak entity is an entity that

• Is existence-dependent and

• Has a primary key that is partially or totally derived from the parent entity in the relationship.

• The existence of a weak entity is indicated by a double rectangle. 

• The weak entity inherits all or part of its primary key from its strong counterpart.

Weak entity 
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From E/R diagrams to Relational designs
1. Turn each entity set into a relation with the same set of attributes



3. Strong entity set with composite attributes

• In the relational model, a strong entity set with

any number of composite attributes will require only one table.

• During conversion, only the simple attributes of composite at
tributes are considered, not the composite attribute itself

https://www.gatevidyalay.com/er-diagrams-to-tables/14

From E/R diagrams to Relational designs



• 4. For Strong Entity Set With Multi-Valued Attributes

In relational model, a strong entity set with any number of
multivalued attributes will require two tables.

• All simple attributes will be stored in a single table with a
primary key.

• Another table will contain the primary key and all attributes with
multiple values.
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From E/R diagrams to Relational designs



16

Combining relations : one to many

Add to the relation

Here, two tables will be required : -studios  - Movies  

Movies:

-No new table for relation
- We modify many side(1 to many) table
- We add 

- Attribute from relation(contracts)
- Primary key of 1 side

many

1

salary
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Here, two tables will be required. Either combine ‘R’ with ‘A’ or ‘B’

Way-01:

1.student ( a1 , a2 ,a3, …,  b1 )
2.Birth ( b1 , b2, b3,…. )

Way-02:

1.student ( a1 , a2, a3, …. )
2.Birth ( a1 , b1 , b2, b3, …. )

Combining relations : one to one

There's no need for a new table. Only the primary key of 
one entity should be added to another



Combining relations : many to many

• Here, three tables will be required:
✓Student(a1,a2,a3,….)

✓Course(c1,c2,c3,…)

✓Enrolled(a1,c1,…)
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Create a new table for the relation



19

Weak entity set always appears in association with identifying relationship with total participation constraint.

• Create a new table
• Put the owner’s primary key in this table
• Combination of the owner and weak entity ‘s primary key is new primary key in this table

Weak entity 
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This concept is used in relational databases for an attribute that is 
the primary key of another table and is used to create a link between that table 
and the table in which it also appears as an attribute.

Foreign key (Also known as FK)

https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

A foreign key is a reference to a
primary key in a table.

Note that foreign keys need not
be unique. Multiple records can
share the same values.
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Unified modeling diagram

• Modeling: Describing a software system at a high level of abstraction

• UML offers much the same capabilities as the E/R model, with the exception of multiway relationships. 

• Here you can see different terminology that is used by E/R and UML.  
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• A class diagram depicts classes and their relationships

• Provide a conceptual model of the system in terms of entities and their relationships

Class diagram
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• Sets of objects, with attributes (state ) and methods (behavior ).

• Each class is represented by a rectangle subdivided into three 
compartments
➢ Name
➢ Attributes
➢ Operations

• Attributes have types.

• PK indicates an attribute in the object’s primary key (optional).

• Methods have declarations: arguments (if any) and return type.

UML Classes
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Associations
• A binary relationship between classes is called an association.

• No multiway relationship (it is broken into binary relationships)

• The association is a set of pairs of objects, one from each of the classes it connects.
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Example
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Self- Associations
An association can have both ends at the same class
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• There are two kinds of Relationships
➢Generalization (parent-child relationship)

➢Association (student enrolls in the course)

• Associations can be further classified as
➢Aggregation

➢Composition

Subclasses in UML
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• Subclasses are presented by rectangles, like any class.

• We assume a sub-class inherits the properties(attributes and 
associations) from its superclass.

Subclasses in UML
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Super-class

Sub-class

Subclasses in UML

Sub-class may have its own attributes and additional, association

A horizontal line, feeding into the arrow
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• expresses a relationship among instances 
of related classes.  It is a specific kind of 
Container-Containee relationship. 

Aggregations

Class C

Class E1 Class E2

AGGREGATION

Container Class

Containee Classes

Bag

Apples Milk

Example

[From Dr.David A. Workman]



Composition
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• Stronger relationship
✓One can not exist without the other

✓ If the school folds, students live on

but the departments go away with the school

✓ Model aggregation or composition? When in doubt, use association (just a simple line)

However, it is also possible in UML, 
to use composition as we used supporting 

relationships for weak entity sets in the E/R 
model.



34



• Class to relations
• For each class, create a relation whose name is the name of the class

• And whose attributes are the attributes of the class.

• Associations to Relations
• For each association, create a relation with the name of that association

• The attributes of the relation are the key attributes of the two connected 
classes (Rename if necessary).

• If there is an association class attached to the association, include the 
attributes of the association class among the attributes of the relation.
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From UML Diagram to Relations



Examples

• Box labeled “PK” indicates that this composition provides part of the key for crews.

• The relation for class crews includes not only its own attribute number, but the key 
for class at the end of the composition, which is studios(name).
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Converting sub-classes
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• Three approaches to convert entity sub-classes in relations
• Subclass relations contain superclass key + specialized attrs. (“UML” 

style)
EX. S(K,A) S1(K,B), S2(K,C)

• Subclass relations contain all attributes (“OO” Style)
EX. S(K,A) S1(K,A, B), S2(K,A,C)
• One relation containing all superclass + subclass attrs.
EX. S(K,A, B, C)

• Pros/cons depend on:
• the frequent queries…
• data characteristics
• sub-classes type (complete/partial; disjoint/overlapping)

S1

B

S

K{pk}
A

S2

C



Converting entity sub-classes: “UML” style
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• Create a relation for the “root” class (as usual)

• It’s key k is the identifier of the class

• For each sub-class  create a relation with the 
key attributes (k) + its own specific attributes

S(K,A)       S1(K,B)        S2(K,C)

S1

B

S

K{pk}
A

S2

C



Converting entity sub-types: “OO” style
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• Create a relation for each class and for each sub-
class with all its attributes (own+inherited)

• The key is based on the identifier of the “root” entity

S(K,A)      S1(K,A, B)     S2(K,A,C)

S1

B

S

K{pk}
A

S2

C



Converting sub-classes: attributes and null values
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• Create one single relation with all 
the attributes of the class hierarchy
S(K,A, B, C)

• Instances have null in attributes that 
don’t belong to them

• Specific attributes can be used to 
reflect sub-classes !

S1

B

S

K{pk}
A

S2

C



Object Definition Language

• ODL is as a text-based language for specifying the structure of 
databases in object-oriented terms. 

• Like UML, the class is the central concept in ODL.
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Attributes in ODL 

• In ODL, attributes need not be of simple types such as integers

• An attribute is represented in the declaration for its class by the 
keyword attribute, the type, and the name of attribute.
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Here genres is enumerated type (list of symbolic constants). 
The four values that genre is allowed to take are drama, comedy, …..



Attributes in ODL 

• Attribute Address has a type that is a record structure

• The name of this structure is Addr. It consists of two fields: street and 
city
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Relationships in ODL

• An ODL relationship is declared inside a class declaration by the 
keyword relationship, a type, and the name of the relationship.

• For example, the best way to represent the connection between the 
Movie and Star classes is with a relationship.

• We add this line in the declaration of class Movie. 
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Multiplicity of relationships

• If we have many-many relationships between classes C and D
• Set<D>, Set <C>

• If the relationship is many-one from C to D, 
• The type of the relationship in C is just D 
• while the type of the relationship in D is set<C>.

• If the relationship is one-one, 
• the type of the relationship in C is just D 
• and in D it is just C.
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Many-many relationships between Star and movie

Since the type of OwnedBy is Studio, while the type of owns 
is Set<Movie>, we see that this pair od inverse relationship 
is many-one from Movie to studio. 

movie

Star

stars
starreIn



Declaring Keys in ODL

• The declaration of a key or keys for a class is optional.
• ODL assumes that all objects have an object-identity
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Subclasses in ODL

• Class C to be a subclass of another class D
• Follow the name C in its declaration with the keyword extends and the name D

• Then class C inherits all the properties of D and may have additional properties 
of its own. 
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From ODL Design to relational Design 

• Page 193-196
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