
Chapter 4
High-Level Database

Models

Main reference:

A First Course in Database Systems (and associated material) by

J. Ullman and J. Widom, Prentice-Hall 1

Université Grenoble Alpes
23/02/2023

Bahareh Afshinpour

bahareh.afshinpour@univ-grenoble-alpes.fr

Design approach

2

Conceptual Schema

DB Schema

Physical Schema

Real world

Graphical models
(UML,
Entity−Association)

Text Models
(Object, Relational)

Platform Models
(Java, C++, SQL)

5. Drawing-up the physical schema

1. Perceiving the real world

2. Drawing up the conceptual schema

3. Designing the DB schema (logical)

4. Refining the DB schema (logical)

External schemas

Graphical models &
Natual Language
(UML, FlowCharts,...)

Recall
• In practice, it is often easier to start with a higher-level model and

then convert the design to the relational model.

• There are several options for the notation in which the design is
expressed.
• Entity-relationship diagram
• UML (class diagram)
• ODL(object description language)

3

ER Diagrams, Naming Conventions, and Design Issues

4

5

6

7

Representing Keys in the E/R Model

8

9

• Weak Entities

• A weak entity is an entity that

• Is existence-dependent and

• Has a primary key that is partially or totally derived from the parent entity in the relationship.

• The existence of a weak entity is indicated by a double rectangle.

• The weak entity inherits all or part of its primary key from its strong counterpart.

Weak entity

10

11

12

13

From E/R diagrams to Relational designs
1. Turn each entity set into a relation with the same set of attributes

3. Strong entity set with composite attributes

• In the relational model, a strong entity set with

any number of composite attributes will require only one table.

• During conversion, only the simple attributes of composite at
tributes are considered, not the composite attribute itself

https://www.gatevidyalay.com/er-diagrams-to-tables/14

From E/R diagrams to Relational designs

• 4. For Strong Entity Set With Multi-Valued Attributes

In relational model, a strong entity set with any number of
multivalued attributes will require two tables.

• All simple attributes will be stored in a single table with a
primary key.

• Another table will contain the primary key and all attributes with
multiple values.

15

From E/R diagrams to Relational designs

16

Combining relations : one to many

Add to the relation

Here, two tables will be required : -studios - Movies

Movies:

-No new table for relation
- We modify many side(1 to many) table
- We add

- Attribute from relation(contracts)
- Primary key of 1 side

many

1

salary

17

Here, two tables will be required. Either combine ‘R’ with ‘A’ or ‘B’

Way-01:

1.student (a1 , a2 ,a3, …, b1)
2.Birth (b1 , b2, b3,….)

Way-02:

1.student (a1 , a2, a3, ….)
2.Birth (a1 , b1 , b2, b3, ….)

Combining relations : one to one

There's no need for a new table. Only the primary key of
one entity should be added to another

Combining relations : many to many

• Here, three tables will be required:
✓Student(a1,a2,a3,….)

✓Course(c1,c2,c3,…)

✓Enrolled(a1,c1,…)

18

Create a new table for the relation

19

Weak entity set always appears in association with identifying relationship with total participation constraint.

• Create a new table
• Put the owner’s primary key in this table
• Combination of the owner and weak entity ‘s primary key is new primary key in this table

Weak entity

20

This concept is used in relational databases for an attribute that is
the primary key of another table and is used to create a link between that table
and the table in which it also appears as an attribute.

Foreign key (Also known as FK)

https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

A foreign key is a reference to a
primary key in a table.

Note that foreign keys need not
be unique. Multiple records can
share the same values.

21

Unified modeling diagram

• Modeling: Describing a software system at a high level of abstraction

• UML offers much the same capabilities as the E/R model, with the exception of multiway relationships.

• Here you can see different terminology that is used by E/R and UML.

22

• A class diagram depicts classes and their relationships

• Provide a conceptual model of the system in terms of entities and their relationships

Class diagram

23

• Sets of objects, with attributes (state) and methods (behavior).

• Each class is represented by a rectangle subdivided into three
compartments
➢ Name
➢ Attributes
➢ Operations

• Attributes have types.

• PK indicates an attribute in the object’s primary key (optional).

• Methods have declarations: arguments (if any) and return type.

UML Classes

24

Associations
• A binary relationship between classes is called an association.

• No multiway relationship (it is broken into binary relationships)

• The association is a set of pairs of objects, one from each of the classes it connects.

25

Example

26

Self- Associations
An association can have both ends at the same class

27

28

• There are two kinds of Relationships
➢Generalization (parent-child relationship)

➢Association (student enrolls in the course)

• Associations can be further classified as
➢Aggregation

➢Composition

Subclasses in UML

29

• Subclasses are presented by rectangles, like any class.

• We assume a sub-class inherits the properties(attributes and
associations) from its superclass.

Subclasses in UML

30

Super-class

Sub-class

Subclasses in UML

Sub-class may have its own attributes and additional, association

A horizontal line, feeding into the arrow

31

32

• expresses a relationship among instances
of related classes. It is a specific kind of
Container-Containee relationship.

Aggregations

Class C

Class E1 Class E2

AGGREGATION

Container Class

Containee Classes

Bag

Apples Milk

Example

[From Dr.David A. Workman]

Composition

33

• Stronger relationship
✓One can not exist without the other

✓ If the school folds, students live on

but the departments go away with the school

✓ Model aggregation or composition? When in doubt, use association (just a simple line)

However, it is also possible in UML,
to use composition as we used supporting

relationships for weak entity sets in the E/R
model.

34

• Class to relations
• For each class, create a relation whose name is the name of the class

• And whose attributes are the attributes of the class.

• Associations to Relations
• For each association, create a relation with the name of that association

• The attributes of the relation are the key attributes of the two connected
classes (Rename if necessary).

• If there is an association class attached to the association, include the
attributes of the association class among the attributes of the relation.

35

From UML Diagram to Relations

Examples

• Box labeled “PK” indicates that this composition provides part of the key for crews.

• The relation for class crews includes not only its own attribute number, but the key
for class at the end of the composition, which is studios(name).

36

37

Converting sub-classes

38

• Three approaches to convert entity sub-classes in relations
• Subclass relations contain superclass key + specialized attrs. (“UML”

style)
EX. S(K,A) S1(K,B), S2(K,C)

• Subclass relations contain all attributes (“OO” Style)
EX. S(K,A) S1(K,A, B), S2(K,A,C)
• One relation containing all superclass + subclass attrs.
EX. S(K,A, B, C)

• Pros/cons depend on:
• the frequent queries…
• data characteristics
• sub-classes type (complete/partial; disjoint/overlapping)

S1

B

S

K{pk}
A

S2

C

Converting entity sub-classes: “UML” style

39

• Create a relation for the “root” class (as usual)

• It’s key k is the identifier of the class

• For each sub-class create a relation with the
key attributes (k) + its own specific attributes

S(K,A) S1(K,B) S2(K,C)

S1

B

S

K{pk}
A

S2

C

Converting entity sub-types: “OO” style

40

• Create a relation for each class and for each sub-
class with all its attributes (own+inherited)

• The key is based on the identifier of the “root” entity

S(K,A) S1(K,A, B) S2(K,A,C)

S1

B

S

K{pk}
A

S2

C

Converting sub-classes: attributes and null values

41

• Create one single relation with all
the attributes of the class hierarchy
S(K,A, B, C)

• Instances have null in attributes that
don’t belong to them

• Specific attributes can be used to
reflect sub-classes !

S1

B

S

K{pk}
A

S2

C

Object Definition Language

• ODL is as a text-based language for specifying the structure of
databases in object-oriented terms.

• Like UML, the class is the central concept in ODL.

42

Attributes in ODL

• In ODL, attributes need not be of simple types such as integers

• An attribute is represented in the declaration for its class by the
keyword attribute, the type, and the name of attribute.

43

Here genres is enumerated type (list of symbolic constants).
The four values that genre is allowed to take are drama, comedy, …..

Attributes in ODL

• Attribute Address has a type that is a record structure

• The name of this structure is Addr. It consists of two fields: street and
city

44

Relationships in ODL

• An ODL relationship is declared inside a class declaration by the
keyword relationship, a type, and the name of the relationship.

• For example, the best way to represent the connection between the
Movie and Star classes is with a relationship.

• We add this line in the declaration of class Movie.

45

Multiplicity of relationships

• If we have many-many relationships between classes C and D
• Set<D>, Set <C>

• If the relationship is many-one from C to D,
• The type of the relationship in C is just D
• while the type of the relationship in D is set<C>.

• If the relationship is one-one,
• the type of the relationship in C is just D
• and in D it is just C.

46

47

Many-many relationships between Star and movie

Since the type of OwnedBy is Studio, while the type of owns
is Set<Movie>, we see that this pair od inverse relationship
is many-one from Movie to studio.

movie

Star

stars
starreIn

Declaring Keys in ODL

• The declaration of a key or keys for a class is optional.
• ODL assumes that all objects have an object-identity

48

Subclasses in ODL

• Class C to be a subclass of another class D
• Follow the name C in its declaration with the keyword extends and the name D

• Then class C inherits all the properties of D and may have additional properties
of its own.

49

From ODL Design to relational Design

• Page 193-196

50

